Biomechanics of the rostrum and the role of facial sutures.
نویسندگان
چکیده
The rostrum is a large diameter, thin-walled tubular structure that receives loads from the teeth. The rostrum can be conceptualized both as a rigid structure and as an assemblage of several bones that interface at sutures. Using miniature pigs, we measured in vivo strains in rostral bones and sutures to gain a better understanding of how the rostrum behaves biomechanically. Strains in the premaxillary and nasal bones were low but the adjacent maxillary-premaxillary, internasal, and intermaxillary suture strains were larger by an order of magnitude. While this finding emphasizes the composite nature of the rostrum, we also found evidence in the maxillary and nasal bones for rigid structural behavior. Namely, maxillary strain is consistent with a short beam model under shear deformation from molar loading. Strain in the nasal bones is only partially supported by a long beam model; rather, a complex pattern of dorsal bending of the rostrum from incisor contact and lateral compression is suggested. Torsion of the maxilla is ruled out due to the bilateral occlusion of pigs and the similar working and balancing side strains, although it may be important in mammals with a unilateral bite. Torsional loading does appear important in the premaxillae, which demonstrate working and balancing side changes in strain orientation. These differences are attributed to asymmetrical incisor contact occurring at the end of the power stroke.
منابع مشابه
Brief communication: histology and micro CT as methods for assessment of facial suture patency.
The extent of fusion in facial sutures has implications for topics ranging from biomechanics to phylogeny reconstruction. An unfortunate limitation of studying sutural fusion in skeletal specimens is that it is difficult to assess whether apparently patent sutures are in fact fused internally. Both histology and microcomputed tomography (CT) are potential tools for solving this, but relatively ...
متن کاملThe Effect of Corrective Exercises on Pain, Function, Proprioception, and Muscle Activity in People with Glenohumeral Internal Rotation Deficit (GIRD)
Background and Objectives: Glenohumeral internal rotation deficit (GIRD) is one of the most important risk factors for overhead-throwing athletes and adversely affects the biomechanics of the Glenohumeral joint during overhead-throwing motions. The aim of this study was to review all the articles performed in the field on the effect of corrective exercises on pain, function, proprioception, and...
متن کاملThe global impact of sutures assessed in a finite element model of a macaque cranium.
The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic mat...
متن کاملNasal capsular cartilage is required for rat transpalatal suture morphogenesis.
In the cranial vault, suture morphogenesis occurs when the growing cranial bones approximate and overlap or abut one another. Patency of developing sutures is regulated by the underlying dura mater. Once cranial sutures form, bone growth proceeds from the sutures in response to growth signals from the rapidly expanding neurocranium. Facial sutures do not develop in contact with the dura mater. ...
متن کاملA new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds
Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds) and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of morphology
دوره 257 1 شماره
صفحات -
تاریخ انتشار 2003